Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
Am J Pathol ; 193(6): 690-701, 2023 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2312845

RESUMO

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.


Assuntos
COVID-19 , Doenças Vasculares , Cricetinae , Animais , Humanos , Mesocricetus , SARS-CoV-2 , COVID-19/patologia , Pulmão/patologia , Doenças Vasculares/patologia , Modelos Animais de Doenças
2.
The American journal of pathology ; 2023.
Artigo em Inglês | EuropePMC | ID: covidwho-2251051

RESUMO

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human COVID-19 disease. Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in COVID-19 patients. Here, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19 disease. The results show that regions of active pulmonary inflammation in SARS-CoV-2 infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2 inoculated hamsters are likely due to endothelial damage followed by platelet and macrophage infiltration.

3.
J Orthop Res ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: covidwho-2262435

RESUMO

The novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has infected more than 650 million people worldwide. Approximately 23% of these patients developed lasting "long-haul" COVID symptoms, including fatigue, joint pain, and systemic hyperinflammation. However, the direct clinical impact of SARS-CoV-2 infection on the skeletal system including bone and joint health has not been determined. Utilizing a humanized mouse model of COVID-19, this study provides the first direct evidence that SARS-CoV-2 infection leads to acute bone loss, increased osteoclast number, and thinner growth plates. This bone loss could decrease whole-bone mechanical strength and increase the risk of fragility fractures, particularly in older patients, while thinner growth plates may create growth disturbances in younger patients. Evaluating skeletal health in patients that have recovered from COVID-19 will be crucial to identify at-risk populations and develop effective countermeasures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA